Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/14466
Estimation of NO2 emission strengths over Riyadh and Madrid from space from a combination of wind-assigned anomalies and a machine learning technique
Título : Estimation of NO2 emission strengths over Riyadh and Madrid from space from a combination of wind-assigned anomalies and a machine learning technique
Autor : Tu, QiansiHase, FrankChen, ZihanSchneider, Matthias RESEARCHERID García Rodríguez, Omaira Elena ORCID RESEARCHERID Autor AEMETKhosrawi, FarahnazChen, ShuoBlumenstock, ThomasLiu, FangQin, KaiCohen, JasonHe, QinLin, SongJiang, HongyanFang, Dianjun
Palabras clave : Nitrogen dioxide; Air pollution; Wind-assigned anomalies; Machine learning technique
Fecha de publicación : 2023
Editor: European Geosciences Union; Copernicus Publications
Citación : Atmospheric Measurement Techniques. 2023, 16(8), p. 2237–2262
Versión del editor: https://doi.org/10.5194/amt-16-2237-2023
Resumen : Nitrogen dioxide (NO2) air pollution provides valuable information for quantifying NOx (NOx = NO + NO2) emissions and exposures. This study presents a comprehensive method to estimate average tropospheric NO2 emission strengths derived from 4-year (May 2018–June 2022) TROPOspheric Monitoring Instrument (TROPOMI) observations by combining a wind-assigned anomaly approach and a machine learning (ML) method, the so-called gradient descent algorithm. This combined approach is firstly applied to the Saudi Arabian capital city of Riyadh, as a test site, and yields a total emission rate of 1.09×1026 molec. s−1. The ML-trained anomalies fit very well with the wind-assigned anomalies, with an R2 value of 1.0 and a slope of 0.99. Hotspots of NO2 emissions are apparent at several sites: over a cement plant and power plants as well as over areas along highways. Using the same approach, an emission rate of 1.99×1025 molec. s−1 is estimated in the Madrid metropolitan area, Spain. Both the estimate and spatial pattern are comparable with the Copernicus Atmosphere Monitoring Service (CAMS) inventory.
Patrocinador: We wish to acknowledge the Joint R&D and Talents Program project, funded by the Qingdao Sino-German Institute of Intelligent Technologies (grant no. kh0100020213319); the Deutsche Forschungsgemeinschaft; and the Open Access Publishing Fund of the Karlsruhe Institute of Technology for their support.
URI : http://hdl.handle.net/20.500.11765/14466
ISSN : 1867-1381
1867-8548
Colecciones: Artículos científicos 2023-2026


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
amt-16-2237-2023.pdf
2,03 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias