Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/14523
Homogenization of monthly series of temperature and precipitation: benchmarking results of the MULTITEST project
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGuijarro Pastor, José Antonioes_ES
dc.contributor.authorLópez, José Antonioes_ES
dc.contributor.authorAguilar, Enrices_ES
dc.contributor.authorDomonkos, Peteres_ES
dc.contributor.authorVenema, Victor K. C.es_ES
dc.contributor.authorSigró, Javieres_ES
dc.contributor.authorBrunet, Manolaes_ES
dc.date.accessioned2023-05-16T06:59:43Z-
dc.date.available2023-05-16T06:59:43Z-
dc.date.issued2023-
dc.identifier.citationInternational Journal of Climatology. 2023, p. 1-19es_ES
dc.identifier.issn0899-8418-
dc.identifier.issn1097-0088-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/14523-
dc.description.abstractThe homogenization of climate observational series is a needed process before undertaking confidently any study of their internal variability, since changes in the observation methods or in the surroundings of the observatories, for instance, can introduce biases in the data of the same order of magnitude than the underlying climate variations and trends. Many methods have been proposed in the past to remove the unwanted perturbations from the climatic series, and some of them have been implemented in software packages freely available from the Internet. The Spanish project MULTITEST was intended to test their performance in an automatic way with synthetic monthly series of air temperature and atmospheric precipitation, in order to update inter-comparison results from former projects, especially those of the COST Action ES0601. Several networks representing different climates and station densities were used to test a variety of homogenization packages on hundreds of random samples. Results were evaluated mainly in form of Root Mean Squared Errors (RMSE) and errors in the trend of the series, showing that ACMANT, followed by Climatol, minimized these errors. However, other packages performed also relatively well, even outperforming them when there were simultaneous biases of the same sign in most or all the test series.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.publisherRoyal Meteorological Societyes_ES
dc.rightsLicencia CC: Reconocimiento–NoComercial–SinObraDerivada CC BY-NC-NDes_ES
dc.subjectHomogenizationes_ES
dc.subjectBenchmarkinges_ES
dc.subjectMonthly serieses_ES
dc.subjectPrecipitationes_ES
dc.subjectTemperaturees_ES
dc.titleHomogenization of monthly series of temperature and precipitation: benchmarking results of the MULTITEST projectes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1002/joc.8069es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses_ES
Colecciones: Artículos científicos 2023-2026


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
MULTITEST-IJC23-post.pdf
5,67 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias