Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/14781
Rigid body motion in viscous flows using the finite element method
Título : Rigid body motion in viscous flows using the finite element method
Autor : Herreros, María IsabelLigüérzana Rodríguez, Sergio ORCID Autor AEMET
Palabras clave : Rigid body dynamics; Numerical methods; Finite-element analysis; Computational fluid dynamics; Liquid solid interfaces; Navier Stokes equations; Viscous liquid
Fecha de publicación : 2020
Editor: American Institute of Physics
Citación : Physics of Fluids. 2020, 32(12), 123311
Versión del editor: https://doi.org/10.1063/5.0029242
Resumen : A new model for the numerical simulation of a rigid body moving in a viscous fluid flow using the finite element method is presented. One of the most interesting features of this approach is the small computational effort required to solve the motion of the rigid body, comparable to a pure fluid solver. The model is based on the idea of extending the fluid velocity inside the rigid body and solving the flow equations with a penalty term to enforce rigid motion inside the solid. In order to get the velocity field in the fluid domain, the Navier–Stokes equations for an incompressible viscous flow are solved using a fractional-step procedure combined with the two-step Taylor–Galerkin algorithm for the fractional linear momentum. Once the velocity field in the fluid domain is computed, calculation of the rigid motion is obtained by averaging translation and angular velocities over the solid. One of the main challenges when dealing with the fluid–solid interaction is the proper modeling of the interface that separates the solid moving mass from the viscous fluid. In this work, the combination of the level set technique and the two-step Taylor–Galerkin algorithm for tracking the fluid–solid interface is proposed. The characteristics exhibited by the two-step Taylor–Galerkin, minimizing oscillations and numerical diffusion, make this method suitable to accurately advect the solid domain, avoiding distortions at its boundaries and, thus, preserving the initial size and shape of the rigid body. The proposed model has been validated against empirical solutions, experimental data, and numerical simulations found in the literature. In all tested cases, the numerical results have shown to be accurate, proving the potential of the proposed model as a valuable tool for the numerical analysis of the fluid–solid interaction.
URI : http://hdl.handle.net/20.500.11765/14781
ISSN : 1070-6631
1089-7666
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
PF_Herreros_2020.pdf
3,2 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias