Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.11765/14862
Statistical Atmospheric Parameter Retrieval Largely Benefits from Spatial-Spectral Image Compression
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | García Sobrino, Joaquín | es_ES |
dc.contributor.author | Serra-Sagristà, Joan | es_ES |
dc.contributor.author | Laparra, Valero | es_ES |
dc.contributor.author | Calbet, Xavier | es_ES |
dc.contributor.author | Camps-Valls, Gustau | es_ES |
dc.date.accessioned | 2023-08-02T06:17:25Z | - |
dc.date.available | 2023-08-02T06:17:25Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | IEEE Transactions on Geoscience and Remote Sensing. 2017, 55(4), p. 2213-2224 | es_ES |
dc.identifier.issn | 0196-2892 | - |
dc.identifier.issn | 1558-0644 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.11765/14862 | - |
dc.description.abstract | The Infrared Atmospheric Sounding Interferometer (IASI) is flying on board of the Metop satellite series, which is part of the EUMETSAT Polar System (EPS). Products obtained from IASI data represent a significant improvement in the accuracy and quality of the measurements used for meteorological models. Notably, IASI collects rich spectral information to derive temperature and moisture profiles –among other relevant trace gases–, essential for atmospheric forecasts and for the understanding of weather. Here, we investigate the impact of near-lossless and lossy compression on IASI L1C data when statistical retrieval algorithms are later applied. We search for those compression ratios that yield a positive impact on the accuracy of the statistical retrievals. The compression techniques help reduce certain amount of noise on the original data and, at the same time, incorporate spatial-spectral feature relations in an indirect way without increasing the computational complexity. We observed that compressing images, at relatively low bitrates, improves results in predicting temperature and dew point temperature, and we advocate that some amount of compression prior to model inversion is beneficial. This research can benefit the development of current and upcoming retrieval chains in infrared sounding and hyperspectral sensors. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.rights | Licencia CC: Reconocimiento–NoComercial–SinObraDerivada CC BY-NC-ND | es_ES |
dc.subject | Infrared Atmospheric Sounding Interferometer | es_ES |
dc.subject | Statistical retrieval | es_ES |
dc.subject | Kernel Methods | es_ES |
dc.subject | Near-Lossless Compression | es_ES |
dc.subject | Lossy Compression | es_ES |
dc.subject | JPEG 2000 | es_ES |
dc.subject | Spectral Transforms | es_ES |
dc.title | Statistical Atmospheric Parameter Retrieval Largely Benefits from Spatial-Spectral Image Compression | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TGRS.2016.2639099 | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
Colecciones: | Artículos científicos 2015-2018 |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
IEETRAGEO_Calbet_2017... | 1,32 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.