Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/14865
Event selection for dynamical downscaling: a neural network approach for physically-constrained precipitation events
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGómez Navarro, Juan Josées_ES
dc.contributor.authorRaible, Christoph Corneliuses_ES
dc.contributor.authorGarcía Valero, Juan Andréses_ES
dc.contributor.authorMessmer, Martinaes_ES
dc.contributor.authorMontávez Gómez, Juan Pedroes_ES
dc.contributor.authorMartius, Oliviaes_ES
dc.date.accessioned2023-08-02T07:59:17Z-
dc.date.available2023-08-02T07:59:17Z-
dc.date.issued2022-
dc.identifier.citationClimate Dynamics. 2022, 58, p. 2863–2879es_ES
dc.identifier.issn0930-7575-
dc.identifier.issn1432-0894-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/14865-
dc.description.abstractThis study presents a new dynamical downscaling strategy for extreme events. It is based on a combination of statistical downscaling of coarsely resolved global model simulations and dynamical downscaling of specific extreme events constrained by the statistical downscaling part. The method is applied to precipitation extremes over the upper Aare catchment, an area in Switzerland which is characterized by complex terrain. The statistical downscaling part consists of an Artificial Neural Network (ANN) framework trained in a reference period. Thereby, dynamically downscaled precipitation over the target area serve as predictands and large-scale variables, received from the global model simulation, as predictors. Applying the ANN to long term global simulations produces a precipitation series that acts as a surrogate of the dynamically downscaled precipitation for a longer climate period, and therefore are used in the selection of events. These events are then dynamically downscaled with a regional climate model to 2 km. The results show that this strategy is suitable to constraint extreme precipitation events, although some limitations remain, e.g., the method has lower efficiency in identifying extreme events in summer and the sensitivity of extreme events to climate change is underestimated.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.subjectDynamical downscalinges_ES
dc.subjectExtreme eventses_ES
dc.subjectStatistical downscalinges_ES
dc.subjectPrecipitation extremeses_ES
dc.titleEvent selection for dynamical downscaling: a neural network approach for physically-constrained precipitation eventses_ES
dc.typeinfo:eu-repo/semantics/preprintes_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s00382-019-04818-wes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
CD_Gomez_2019.pdf
1,19 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias