Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/15347
Thunderstorm prediction during pre-tactical air-traffic-flow management using convolutional neural networks
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorJardines, Anieles_ES
dc.contributor.authorEivazi, Hamidrezaes_ES
dc.contributor.authorZea, Eliases_ES
dc.contributor.authorGarcía-Heras, Javieres_ES
dc.contributor.authorSimarro Grande, Juan Pabloes_ES
dc.contributor.authorOtero, Evelynes_ES
dc.contributor.authorSoler, Manueles_ES
dc.contributor.authorVinuesa, Ricardoes_ES
dc.date.accessioned2024-01-09T07:47:06Z-
dc.date.available2024-01-09T07:47:06Z-
dc.date.issued2023-
dc.identifier.citationExpert Systems with Applications. 2024, 241, 122466es_ES
dc.identifier.issn0957-4174-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/15347-
dc.description.abstractThunderstorms can be a large source of disruption for European air-traffic management causing a chaotic state of operation within the airspace system. In current practice, air-traffic managers are provided with imprecise forecasts which limit their ability to plan strategically. As a result, weather mitigation is performed using tactical measures with a time horizon of three hours. Increasing the lead time of thunderstorm predictions to the day before operations could help air-traffic managers plan around weather and improve the efficiency of air-traffic-management operations. Emerging techniques based on machine learning have provided promising results, partly attributed to reduced human bias and improved capacity in predicting thunderstorms purely from numerical weather prediction data. In this paper, we expand on our previous work on thunderstorm forecasting, by applying convolutional neural networks (CNNs) to exploit the spatial characteristics embedded in the weather data. The learning task of predicting convection is formulated as a binary-classification problem based on satellite data. The performance of multiple CNN-based architectures, including a fully-convolutional neural network (FCN), a CNN-based encoder–decoder, a U-Net, and a pyramid-scene parsing network (PSPNet) are compared against a multi-layer-perceptron (MLP) network. Our work indicates that CNN-based architectures improve the performance of point-prediction models, with a fully-convolutional neural-network architecture having the best performance. Results show that CNN-based architectures can be used to increase the prediction lead time of thunderstorms. Lastly, a case study illustrating the applications of convection-prediction models in an air-traffic-management setting is presented.es_ES
dc.description.sponsorshipThe project has also received funding from the SESAR Joint Undertaking within the framework of the European Union’s Horizon 2020 research and innovation programme under grant agreement No 891965.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsLicencia CC: Reconocimiento–NoComercial–SinObraDerivada CC BY-NC-NDes_ES
dc.subjectThunderstormses_ES
dc.subjectAir-traffic managementes_ES
dc.subjectWeather dataes_ES
dc.subjectNumerical weather predictiones_ES
dc.subjectSatellite imageses_ES
dc.subjectMachine learninges_ES
dc.subjectConvolutional neural networkes_ES
dc.titleThunderstorm prediction during pre-tactical air-traffic-flow management using convolutional neural networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.eswa.2023.122466es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2023-2026


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
ESA_Jardines_2023_com...
875,47 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias