Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/15474
pyClim-SDM: Service for generation of statistically downscaled climate change projections supporting national adaptation strategies
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorHernanz Lázaro, Alfonsoes_ES
dc.contributor.authorCorrea, Carloses_ES
dc.contributor.authorGarcía Valero, Juan Andréses_ES
dc.contributor.authorDomínguez Alonso, Martaes_ES
dc.contributor.authorRodríguez Guisado, Estebanes_ES
dc.contributor.authorRodríguez Camino, Ernestoes_ES
dc.date.accessioned2024-02-07T08:12:50Z-
dc.date.available2024-02-07T08:12:50Z-
dc.date.issued2023-
dc.identifier.citationClimate Services. 2023, 32, 100408es_ES
dc.identifier.issn2405-8807-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/15474-
dc.description.abstractThe climate change impact and adaptation communities need future scenarios with sufficient high resolution, which are frequently achieved by applying Statistical Downscaling Models (SDMs) over global climate models. A large variety of SDMs exists, and some can be more suitable than others for each specific purpose. For this reason, it is important to develop tools to facilitate the evaluation and generation of downscaled scenarios following different approaches. In this paper we present a service, ‘pyClim-SDM’, which allows users to generate and evaluate their own downscaled scenarios with a very simple and user-friendly graphical interface. This tool includes a large collection of state-of-the-art methods belonging to different families to downscale daily data of the following surface variables: temperature, precipitation, wind, relative humidity and cloud coverage. Additionally, the software is prepared to be applied over any other user-defined target variable. Thus, multivariable indexes can be tackled as target variables themselves, instead of being calculated from the downscaled primary variables. With this possibility, potential intervariable inconsistencies are avoided. An application example for a Fire Weather Index, dependent on temperature, wind, humidity and precipitation, is shown. The service here presented -mainly based on a new downscaling software and a user-friendly graphical interface- is an essential piece for evaluating and generating high-resolution projection data within the Spanish national climate change adaptation strategy which includes, among other elements, a common database for all sectors, viewer and data distribution portal, etc.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsLicencia CC: Reconocimiento–NoComercial–SinObraDerivada CC BY-NC-NDes_ES
dc.subjectStatistical downscalinges_ES
dc.subjectClimate servicees_ES
dc.subjectClimate projectionses_ES
dc.subjectSoftwarees_ES
dc.subjectGraphical user interfacees_ES
dc.titlepyClim-SDM: Service for generation of statistically downscaled climate change projections supporting national adaptation strategieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.cliser.2023.100408es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2023-2026


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
CS_Hernanz_2023.pdf
869,61 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias