Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/16119
A neural network to retrieve cloud cover from all-sky cameras: A case of study over Antarctica
Título : A neural network to retrieve cloud cover from all-sky cameras: A case of study over Antarctica
Autor : González-Fernández, DanielRomán, RobertoAntuña-Sánchez, Juan CarlosCachorro, Victoria E.Copes, GustavoHerrero-Anta, SaraHerrero del Barrio, CeliaBarreto Velasco, África ORCID RESEARCHERID SCOPUSID Autor AEMETGonzález, RamiroRamos López, RamónAutor AEMETToledano, CarlosCalle, AbelFrutos Baraja, Ángel Máximo de
Palabras clave : AI; All-sky camera; Antarctic; Convolutional neural network; Cloud cover; Image identification
Fecha de publicación : 2024
Editor: Wiley; Royal Meteorological Society
Citación : Quarterly Journal of the Royal Meteorological Society. 2024, Early View
Versión del editor: https://doi.org/10.1002/qj.4834
Resumen : We present a new model based on a convolutional neural network (CNN) to predict daytime cloud cover (CC) from sky images captured by all-sky cameras, which is called CNN-CC. A total of 49,016 daytime sky images, recorded at different Spanish locations (Valladolid, La Palma, and Izaña) from two different all-sky camera types, are manually classified into different CC (oktas) values by trained researchers. Subsequently, the images are randomly split into a training set and a test set to validate the model. The CC values predicted by the CNN-CC model are compared with the observations made by trained people on the test set, which serve as reference.
Patrocinador: The research has been supported by the Ministeriode Ciencia e Innovación (MICINN), with Grant no.PID2021-127588OB-I00, and the Junta of Castilla y León (JCyL) with Grant no. VA227P20. This work ispart of the project TED2021-131211B-I00 funded byMCIN/AEI/10.13039/501100011033 and the EuropeanUnion, “NextGenerationEU”/PRTR.
URI : http://hdl.handle.net/20.500.11765/16119
ISSN : 0035-9009
1477-870X
Colecciones: Artículos científicos 2023-2026


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
QJRMS_Gonzalez_2024.pdf
9,72 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias