Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11765/16119
A neural network to retrieve cloud cover from all-sky cameras: A case of study over Antarctica
Title: A neural network to retrieve cloud cover from all-sky cameras: A case of study over Antarctica
Authors: González-Fernández, DanielRomán, RobertoAntuña-Sánchez, Juan CarlosCachorro, Victoria E.Copes, GustavoHerrero-Anta, SaraHerrero del Barrio, CeliaBarreto Velasco, África ORCID RESEARCHERID SCOPUSID Autor AEMETGonzález, RamiroRamos López, RamónAutor AEMETToledano, CarlosCalle, AbelFrutos Baraja, Ángel Máximo de
Keywords: AI; All-sky camera; Antarctic; Convolutional neural network; Cloud cover; Image identification
Issue Date: 2024
Publisher: Wiley; Royal Meteorological Society
Citation: Quarterly Journal of the Royal Meteorological Society. 2024, Early View
Publisher version: https://doi.org/10.1002/qj.4834
Abstract: We present a new model based on a convolutional neural network (CNN) to predict daytime cloud cover (CC) from sky images captured by all-sky cameras, which is called CNN-CC. A total of 49,016 daytime sky images, recorded at different Spanish locations (Valladolid, La Palma, and Izaña) from two different all-sky camera types, are manually classified into different CC (oktas) values by trained researchers. Subsequently, the images are randomly split into a training set and a test set to validate the model. The CC values predicted by the CNN-CC model are compared with the observations made by trained people on the test set, which serve as reference.
Sponsorship : The research has been supported by the Ministeriode Ciencia e Innovación (MICINN), with Grant no.PID2021-127588OB-I00, and the Junta of Castilla y León (JCyL) with Grant no. VA227P20. This work ispart of the project TED2021-131211B-I00 funded byMCIN/AEI/10.13039/501100011033 and the EuropeanUnion, “NextGenerationEU”/PRTR.
URI: http://hdl.handle.net/20.500.11765/16119
ISSN: 0035-9009
1477-870X
Appears in Collections:Artículos científicos 2023-2026


Files in This Item:
  File Description SizeFormat 
QJRMS_Gonzalez_2024.pdf
9,72 MBAdobe PDFThumbnail
View/Open
Show full item record



Items in Arcimis are protected by Creative Commons License, unless otherwise indicated.

Arcimis Repository
Nota Legal Contacto y sugerencias