Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.11765/16263
Retrieval of Solar Shortwave Irradiance from All-Sky Camera Images
Título : | Retrieval of Solar Shortwave Irradiance from All-Sky Camera Images |
Autor : | González-Fernández, Daniel; Román, Roberto; Mateos, David; Herrero del Barrio, Celia; Cachorro, Victoria E.; Copes, Gustavo; Sánchez, Ricardo; García Cabrera, Rosa Delia ; Doppler, Lionel; Herrero-Anta, Sara; Antuña-Sánchez, Juan Carlos; Barreto Velasco, África ; González, Ramiro; Gatón, Javier; Calle, Abel; Toledano, Carlos; Frutos Baraja, Ángel Máximo de |
Palabras clave : | All-sky cameras; Sky images; Convolutional neural network; Cloud modification factor; Shortwave global horizontal irradiance; Antarctic |
Fecha de publicación : | 2024 |
Editor: | MDPI |
Citación : | Remote Sensing. 2024, 16(20), 3821 |
Versión del editor: | https://doi.org/10.3390/rs16203821 |
Resumen : | The present work proposes a new model based on a convolutional neural network (CNN) to retrieve solar shortwave (SW) irradiance via the estimation of the cloud modification factor (CMF) from daytime sky images captured by all-sky cameras; this model is named CNN-CMF. To this end, a total of 237,669 sky images paired with SW irradiance measurements obtained by using pyranometers were selected at the following three sites: Valladolid and Izaña, Spain, and Lindenberg, Germany. This dataset was randomly split into training and testing sets, with the latter excluded from the training model in order to validate it using the same locations. |
Patrocinador: | The research has been supported by the Ministerio de Ciencia e Innovación, with the grant no. PID2021-127588OB-I00, and the Junta of Castilla y León with the grant no. VA227P20. This work is part of the project TED2021-131211B-I00 funded by MCIN/AEI/10.13039/501100011033 and European Union, “NextGenerationEU”/PRTR. This research is based on work from COST Action CA21119 HARMONIA, supported by COST (European Cooperation in Science and Technology). |
URI : | http://hdl.handle.net/20.500.11765/16263 |
ISSN : | 2072-4292 |
Colecciones: | Artículos científicos 2023-2026 |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
RM_Gonzalez_2024.pdf | 1,35 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.