Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/17219
A hierarchical Bayesian spatio-temporal model for estimating solar radiation from sunshine duration records
Título : A hierarchical Bayesian spatio-temporal model for estimating solar radiation from sunshine duration records
Autor : Begueria, SantiagoVicente Serrano, Sergio MartínGutiérrez Llorente, José ManuelBrands, SwenGil-Guallar, MarcosRoyo-Aranda, AlejandroRondón-Velasco, María del MarTorralba-Gallego, AntonioLuna Rico, Yolanda ORCID RESEARCHERID SCOPUSID Autor AEMETMorata Gasca, Ana ORCID SCOPUSID Autor AEMET
Palabras clave : Solar radiation; Sunshine duration; Angström–Prescott model; Hierarchical Bayesian modelling; Spatio-temporal analysis; Integrated nested Laplace approximation
Fecha de publicación : 2026
Editor: Elsevier
Citación : Renewable Energy. 2026, 256 (Part C), 123943
Versión del editor: https://doi.org/10.1016/j.renene.2025.123943
Resumen : Estimating surface solar radiation is essential for applications in climatology, agriculture, and renewable energy, yet direct radiation measurements are often sparse or unavailable. This study presents a hierarchical Bayesian spatio-temporal model for estimating daily solar radiation from sunshine duration records, using an extended version of the Angström–Prescott (A–P) empirical relationship. The model incorporates fixed effects, elevation-dependent covariates, spatially and temporally structured latent fields, and unstructured random effects, estimated using the Integrated Nested Laplace Approximation (INLA) and the Stochastic Partial Differential Equation (SPDE) approach. Applied to a comprehensive observational dataset covering mainland Spain (1973–2024), the model reveals coherent spatial and seasonal patterns in the A–P coefficients, including a strong altitude effect on the slope parameter and opposing seasonal cycles for the intercept and slope. Validation against observed radiation data shows excellent agreement for most aspects of the distribution, with remaining discrepancies explained by known limitations in the sunshine duration measurements, particularly under overcast conditions. Long-term temporal trends in the slope suggest changes in atmospheric transmissivity, potentially linked to air quality and aerosol dynamics. The proposed framework provides a flexible, computationally efficient, and physically interpretable tool for reconstructing solar radiation fields in data-scarce regions, offering broad relevance for environmental and climate-related applications.
Patrocinador: This research work has been funded by the European Commission – NextGenerationEU (Regulation EU 2020/2094) through CSIC’s Interdisciplinary Thematic Platform ‘‘Clima (PTI Clima) / Development of Operational Climate Services’’, and by Aragón Government through grant E02-20R.
URI : http://hdl.handle.net/20.500.11765/17219
ISSN : 0960-1481
1879-0682
Colecciones: Artículos científicos 2023-2026


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
RE_Begueria_2025.pdf
2,94 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias