Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11765/8502
NDACC harmonized formaldehyde time-series from 21 FTIR stations covering a wide range of column abundances
Title: NDACC harmonized formaldehyde time-series from 21 FTIR stations covering a wide range of column abundances
Authors: Vigouroux, CorinneBauer, Carlos AugustoBauwens, MaïtéBecker, CornelisBlumenstock, ThomasMazière, Martine deGarcía Rodríguez, Omaira Elena ORCID RESEARCHERID Grutter, MichelGuarin, CésarHannigan, JamesHase, FrankJones, NicholasKivi, RigelKoshelev, DmitryLangerock, BavoLutsch, ErikMakarova, MariaMetzger, Jean-MarcMüller, Jean-FrançoisNotholt, JustusOrtega, IvanPalm, MathiasPaton-Walsh, ClarePoberovskii, AnatolyRettinger, MarkusRobinson, JohnSmale, DanStavrakou, TrissevgeniStremme, WolfgangStrong, KimberlySussmann, RalfTe, YaoToon, Geoffrey C.
Keywords: Formaldehyde time-series; Fourier transform infrared; Measurements
Issue Date: 2018
Publisher: European Geosciences Union
Citation: Atmospheric Measurement Techniques. 2018, 11(9), p. 5049–5073
Publisher version: https://dx.doi.org/10.5194/amt-11-5049-2018
Abstract: Among the more than 20 ground-based FTIR (Fourier transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total column time series until now. Although several independent studies have shown that the FTIR measurements can provide formaldehyde total columns with good precision, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50 % can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations. For the present work, the HCHO retrieval settings have been optimized based on experience gained from past studies and have been applied consistently at the 21 participating stations. Most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC) or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the total systematic and random uncertainties of an individual HCHO total column measurement lie between 12 % and 27 % and between 1 and 11×1014 molec cm−2, respectively. The median values among all stations are 13 % and 2.9×1014 molec cm−2 for the total systematic and random uncertainties. This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison with a global chemistry transport model shows consistency in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013 molec cm−2) to highly polluted levels (7×1016 molec cm−2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time series, some of them starting in the 1990s, are crucial for past and present satellite validation and will be extended in the coming years for the next generation of satellite missions.
Sponsorship : This study has been supported by the ESA PRODEX project TROVA (2016–2018) funded by the Belgian Science Policy Office (Belspo).
URI: http://hdl.handle.net/20.500.11765/8502
ISSN: 1867-1381
1867-8548
Appears in Collections:Artículos científicos 2015-2018


Files in This Item:
  File Description SizeFormat 
amt-11-5049-2018-supp...
6,18 MBAdobe PDFThumbnail
View/Open
amt-11-5049-2018.pdf
1,31 MBAdobe PDFThumbnail
View/Open
Show full item record



Items in Arcimís are protected by Creative Commons License, unless otherwise indicated.

Arcimís Repository
Nota Legal Contacto y sugerencias