Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11765/9741
Improved Retrievals of Carbon Dioxide from the Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm [Discussion paper]
Title: Improved Retrievals of Carbon Dioxide from the Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm [Discussion paper]
Authors: O'Dell, ChristopherEldering, AnnmarieWennberg, Paul O.Crisp, DavidGunson, Michael R.Fisher, BrendanFrankenberg, ChristianKiel, MatthaeusLindqvist, HannakaisaMandrake, LukasMerrelli, AronneNatraj, VijayNelson, Robert R.Osterman, GregoryPayne, Vivienne H.Taylor, Thomas E.Wunch, DebraDrouin, Brian J.Oyafuso, FabianoChang, AlbertMcDuffie, JamesSmyth, MichaelBaker, David F.Basu, SourishChevallier, F.Crowell, SeanFeng, LiangPalmer, Paul I.Dubey, Manvendra K.García Rodríguez, Omaira Elena ORCID RESEARCHERID Griffith, David W. T.Hase, FrankIraci, LauraKivi, RigelMorino, IsamuNotholt, JustusOhyama, HirofumiPetri, ChristofRoehl, Coleen M.Sha, Mahesh K.Strong, KimberlySussmann, RalfTe, YaoUchino, OsamuVelazco, Voltaire A.
Keywords: Carbon dioxide; Orbiting Carbon Observatory-2; Greenhouse gases observations
Issue Date: 2018
Publisher: European Geosciences Union
Citation: Atmospheric Measurement Techniques Discussions. 2018
Publisher version: https://dx.doi.org/10.5194/amt-2018-257
Abstract: Since September 2014, NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO2 (XCO2) for the roughly 100,000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy, better than 0.25%, is required in order to accurately infer carbon sources and sinks from XCO2, significant errors and regional-scale biases in the measurements must be minimized. We discuss efforts to filter out poor quality measurements, and correct the remaining good quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regionalscale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect to TCCON was reduced by 20% over land and 40% over ocean between versions 7 and 8, and nadir and glint observations over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will continue to evolve and improve as the CO2 data record continues to expand.
Sponsorship : Part of this work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA) for the Orbiting Carbon Observatory-2 Project. Work at Colorado State University and the Geology and Planetary Sciences Department at the California Institute of Technology was supported by subcontracts from the OCO-2 Project.
URI: http://hdl.handle.net/20.500.11765/9741
ISSN: 1867-8610
Appears in Collections:Artículos científicos 2015-2018


Files in This Item:
  File Description SizeFormat 
amt-2018-257.pdf
11,18 MBAdobe PDFThumbnail
View/Open
Show full item record



Items in Arcimís are protected by Creative Commons License, unless otherwise indicated.